

Ispezione di ponti: Individuare le aree corrette per perforare l'asfalto in modo sicuro

Panoramica

- Ten Thije è stata incaricata di individuare le aree sicure da perforare senza colpire gli elementi critici di un ponte a Utrechyt.
- Il<u>Profometer</u> e il <u>Proceq GP8100</u> sono stati utilizzati per ispezionare qualsiasi armatura e indicare le aree giuste da perforare.
- Il team ha ottenuto un posizionamento corretto senza danni e con una piccola interruzione del traffico.

Gli appaltatori si trovano molto spesso di fronte al dilemma di dove perforare il calcestruzzo o la pavimentazione, spesso senza avere un'indicazione su dove si trovino gli elementi critici della struttura. Questa ipotesi cieca può essere molto pericolosa per la costruzione e per le persone che utilizzano l'infrastruttura, in quanto un colpo sbagliato può compromettere la stabilità strutturale. Ciò è ancora più importante quando si devono eseguire perforazioni su ponti o gallerie.

Il radar a penetrazione del terreno (GPR) è uno strumento eccellente per localizzare le armature, i cavi post-tesi e i condotti all'interno del calcestruzzo. Tuttavia, i sistemi GPR tradizionali non sono adatti per aree di grandi dimensioni, poiché richiedono troppo tempo per effettuare una scansione accurata e il tempo trascorso sul campo ha costi elevati.

La sfida

Il comune di Utrecht voleva riprogettare una strada contenente un piccolo ponte, dove era necessario spostare alcuni pali della luce. Il cliente di Screening Eagle, Ten Thije, è stato incaricato di verificare se le nuove posizioni dei pali della luce contenessero armature di precompressione.

Side view of the bridge and drawings with indications of GPR data collection

Le nuove posizioni indicate per i pali della luce, tuttavia, erano difficili da raggiungere e ispezionare, troppo vicine o sul marciapiede sopraelevato.

The indicated position for the light poles

Ten Thije decise di effettuare una scansione dell'area sulla strada asfaltata e di correlare le misure GPR con i disegni storici e le travi visibili sotto il ponte. Tutte le posizioni erano dotate di coordinate GPS.

La soluzione

Il <u>GPR Proceq GP8100</u> incorpora sei antenne in linea, coprendo così un'area più ampia con un solo passaggio. Un esempio per capire come il GP8100 limiti il tempo trascorso sul campo, è che un tipico GPR richiede circa 10-15 minuti per raccogliere i dati di un'area di 1mX1m. Poi è necessario salvare i dati, esportarli sul computer per un'elaborazione di base e quindi, manualmente, disegnare i target sulla superficie del calcestruzzo. L'intera procedura può richiedere fino a 30 minuti, a seconda della vostra esperienza.

Scansionando quest'area con il GP8100, sono sufficienti sei passaggi per ottenere un'immagine 3D completa della stessa area; i dati vengono elaborati automaticamente dall'applicazione e istantaneamente si ottengono dati in realtà aumentata visualizzati sulla superficie. L'intera procedura richiede meno di cinque minuti, anche se si è un nuovo utente GPR.

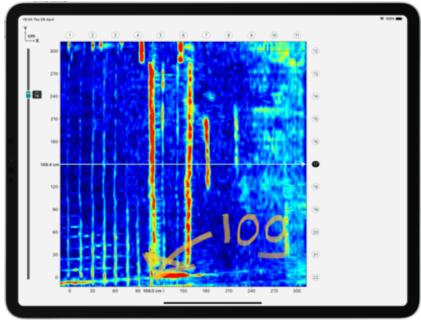
Ma la velocità, nel caso del GP8100, non significa compromettere la qualità dei dati. Le antenne sono distanziate ogni 5 cm, il che significa che in una sola passata si coprono 30 cm di larghezza e la risoluzione è la più alta che una spaziatura di 5 cm possa offrire. La qualità dei dati e la velocità vanno di pari passo, aumentando il livello di certezza richiesto da un professionista del carotaggio e della perforazione sul sito.

I sistemi a impulsi convenzionali possono penetrare fino a 40-50 cm, mentre il GP8100, grazie alla tecnologia SFCW, può arrivare fino a 80 cm di profondità nel calcestruzzo/asfalto. La qualità dei dati, la velocità di raccolta e la profondità di penetrazione rendono il GP8100 una proposta unica per questo tipo di lavori.

I risultati

Ten Thije aveva bisogno di rilevare i punti che potevano essere utilizzati per forare l'asfalto in sicurezza e installare i nuovi pali della luce. Inizialmente l'ingegnere ha ispezionato l'area con un Profometer, per avere una rapida panoramica della zona, dato che voleva maggiori dettagli e profondità nella sua indagine, poi è passato subito a un GP8100 per scansionare l'area.

Using the Profometer on the bridge


La parte cruciale di un'indagine su un ponte è il tempo limitato a disposizione per lavorare sul sito. Limitare il traffico o chiudere il ponte di solito costa all'amministratore del ponte e quindi il GPR è un metodo conveniente in quanto raccoglie i dati velocemente, senza causare alcun danno al ponte.

Traffic is a concern when working on bridges

Il GP8100 utilizza la tecnologia SFCW (Stepped Frequency Continuous Wave) che offre un'ampia larghezza di banda (0,4-6 GHz), utile per le applicazioni che richiedono una risoluzione eccellente e una penetrazione in profondità. In questo caso, le informazioni utili provengono dall'estremità superiore della larghezza di banda, poiché le armature sono relativamente piccole e poco profonde.

Come si vede qui sotto, è stato possibile individuare le aree pulite per le perforazioni e proiettare i dati sull'area di interesse.

Area scan data collected with a GP8100

Il <u>GP8100</u> si collega in modalità wireless a un iPad, il che lo rende un'opzione più sicura e semplice: niente cavi in cui inciampare o rimanere impigliati. Inoltre, l'applicazione per iPad è estremamente intuitiva e consente agli operatori inesperti di raccogliere facilmente i dati. Tutti i dati sono archiviati in modo sicuro nel cloud e possono essere consultati da qualsiasi membro del team, indipendentemente dalla sua ubicazione, offrendo una flessibilità senza pari.

Qualsiasi utente con un account Screening Eagle può ora accedere a <u>Workspace</u>. Gli utenti possono collaborare, gestire e condividere i record delle ispezioni sui ponti da qualsiasi luogo e in qualsiasi momento, semplicemente accedendo con il proprio ID Screening Eagle. Dati di misura organizzati, strutturati e di facile accesso sono la chiave per una collaborazione, un approfondimento e una previsione migliori e più veloci. Workspace fornisce una soluzione end-to-end, dalla raccolta e analisi dei record di misura alla reportistica e al processo decisionale informato per proteggere il mondo costruito.

Screenshot from Workspace. Data can be viewed and shared with any of your collaborators.

L'area di lavoro è molto utile anche per gli utenti non esperti che desiderano condividere i propri dati con i colleghi esperti seduti in ufficio. Questi ultimi possono ottenere la loro visione in pochi minuti e procedere con le esercitazioni senza lasciare il sito.

Consultate altri casi di studio reali e note applicative sulle ispezioni di ponti, calcestruzzo e strade con il GPR nel nostro <u>Spazio ispezioni</u>.

Terms Of Use
Website Data Privacy Policy

Copyright © 2024 Screening Eagle Technologies. All rights reserved. The trademarks and logos displayed herein are registered and unregistered trademarks of Screening Eagle Technologies S.A. and/or its affiliates, in Switzerland and certain other countries.